Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota.

نویسندگان

  • Yijun Zhu
  • Eleanor Jameson
  • Marialuisa Crosatti
  • Hendrik Schäfer
  • Kumar Rajakumar
  • Timothy D H Bugg
  • Yin Chen
چکیده

Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GI highlights from the literature.

▸ Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med 2013;19:576–85. Numerous studies have highlighted the contribution of the gut microbiota to diseases including cancer, inflammatory conditions such as metabolic disorders and also cardiovascular disease (CVD). Mechanistic studies have shown that th...

متن کامل

Uncovering the trimethylamine-producing bacteria of the human gut microbiota

BACKGROUND Trimethylamine (TMA), produced by the gut microbiota from dietary quaternary amines (mainly choline and carnitine), is associated with atherosclerosis and severe cardiovascular disease. Currently, little information on the composition of TMA producers in the gut is available due to their low abundance and the requirement of specific functional-based detection methods as many taxa sho...

متن کامل

Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery

BACKGROUND Trimethylamine-N-oxide (TMAO) is formed in the liver from trimethylamine (TMA), a product exclusively generated by the gut microbiota from dietary phosphatidylcholine and carnitine. An alternative pathway of TMAO formation from carnitine is via the microbiota-dependent intermediate γ-butyrobetaine (γBB). Elevated TMAO levels are associated with cardiovascular disease (CVD), but littl...

متن کامل

A Phospholipid-Protein Complex from Antarctic Krill Reduced Plasma Homocysteine Levels and Increased Plasma Trimethylamine-N-Oxide (TMAO) and Carnitine Levels in Male Wistar Rats

Seafood is assumed to be beneficial for cardiovascular health, mainly based on plasma lipid lowering and anti-inflammatory effects of n-3 polyunsaturated fatty acids. However, other plasma risk factors linked to cardiovascular disease are less studied. This study aimed to penetrate the effect of a phospholipid-protein complex (PPC) from Antarctic krill on one-carbon metabolism and production of...

متن کامل

Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans.

The gut microbiota plays an obligatory role in the metabolism of nutrients containing trimethylamine moieties, such as L-carnitine and choline, leading to the production of the proatherogenic trimethylamine-N-oxide (TMAO). We hypothesized that a short-term, high-fat diet would increase fasting and postprandial plasma concentrations of TMAO in response to a high-fat meal challenge. Following a 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 11  شماره 

صفحات  -

تاریخ انتشار 2014